微反应器的典型特征就是换热效率至少1MW m3 K1,高一些的可达到500 MW m3 K1。二普通的玻璃仪器只有1 l flask ~10 kW m3 K1。因此,微反应器能够比反应釜更高效的散热,这也使得像硝化这样的剧烈反应都能够在高温状态下安全进行。热区温度和高温持续时间随着散热而显著下降。所以,微反应器给更佳的动力研究提供了可能,因为反应器温度梯度对反应速率的影响比任何传统反应釜都要小。同样对微反应器的制热和制冷都更快,甚至操作温度可以低至-100℃。伴随着这种超级换热器的产生,反应温度可以比传统反应釜高上很多。很多的低温反应,如有机金属化学实验能够借助微反应器在10 °C反应条件下进行,而不必像实验室的玻璃装置那样温度需要低至50 °C to 78 °C。

微反应器经常可以连续操作,这使得一些不稳定的中间体的后续合成成为可能,并且避免了一些典型的量产工作耽误。特别是一些需要以毫秒和秒来衡量的低温化学反应不再需要存储数小时直到反应物按计量完成,并且下一步的反应有可能已经开始。这种快速工作单元避免了宝贵的中间体的衰减而且提供了更好的选择性。

连续操作和混合使得浓度分布和传统反应釜相比有着显著不同。在反应釜体系中,成分A是填满的而成分B缓慢加入,这就导致B在开始碰到极度过度的A。而在微反应器中,A和B的混合几乎在瞬间完成,这样B就不会暴露在大量的A中。这也许是这套反应设置的优势或劣势,而关注到这种浓度分布的不同状态是非常重要的。

虽然一台桌面上的微反应器只可以做小量的化学合成,但要放大到工业需求的数量只是叠加大量的微反应器就足够了。而与之相对的,我们见过了太多的在反应釜中反应出色但到了工厂批次生产却失败的案例。

微反应器内的材料密封通常要比传统反应釜来的简单。这使得反应效率的增长伴随着温度的上升而提升,甚至可以超过溶剂的沸点。这种典型的阿伦尼乌斯行为在微反应器中的更容易实现同样是其核心优势。压力也许同样使得在这种流体状态下反应气体的消解变成了可能。